3.125 \(\int \frac {(A+C \cos ^2(c+d x)) \sec ^3(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=262 \[ \frac {(39 A+8 C) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{4 a^{5/2} d}-\frac {(219 A+43 C) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {(63 A+11 C) \tan (c+d x)}{16 a^2 d \sqrt {a \cos (c+d x)+a}}+\frac {(31 A+7 C) \tan (c+d x) \sec (c+d x)}{16 a^2 d \sqrt {a \cos (c+d x)+a}}-\frac {(19 A+3 C) \tan (c+d x) \sec (c+d x)}{16 a d (a \cos (c+d x)+a)^{3/2}}-\frac {(A+C) \tan (c+d x) \sec (c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}} \]

[Out]

1/4*(39*A+8*C)*arctanh(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/a^(5/2)/d-1/32*(219*A+43*C)*arctanh(1/2*sin(
d*x+c)*a^(1/2)*2^(1/2)/(a+a*cos(d*x+c))^(1/2))/a^(5/2)/d*2^(1/2)-1/4*(A+C)*sec(d*x+c)*tan(d*x+c)/d/(a+a*cos(d*
x+c))^(5/2)-1/16*(19*A+3*C)*sec(d*x+c)*tan(d*x+c)/a/d/(a+a*cos(d*x+c))^(3/2)-1/16*(63*A+11*C)*tan(d*x+c)/a^2/d
/(a+a*cos(d*x+c))^(1/2)+1/16*(31*A+7*C)*sec(d*x+c)*tan(d*x+c)/a^2/d/(a+a*cos(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.91, antiderivative size = 262, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3042, 2978, 2984, 2985, 2649, 206, 2773} \[ -\frac {(63 A+11 C) \tan (c+d x)}{16 a^2 d \sqrt {a \cos (c+d x)+a}}+\frac {(39 A+8 C) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{4 a^{5/2} d}-\frac {(219 A+43 C) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{16 \sqrt {2} a^{5/2} d}+\frac {(31 A+7 C) \tan (c+d x) \sec (c+d x)}{16 a^2 d \sqrt {a \cos (c+d x)+a}}-\frac {(19 A+3 C) \tan (c+d x) \sec (c+d x)}{16 a d (a \cos (c+d x)+a)^{3/2}}-\frac {(A+C) \tan (c+d x) \sec (c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[((A + C*Cos[c + d*x]^2)*Sec[c + d*x]^3)/(a + a*Cos[c + d*x])^(5/2),x]

[Out]

((39*A + 8*C)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(4*a^(5/2)*d) - ((219*A + 43*C)*ArcTan
h[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*d) - ((63*A + 11*C)*Tan[c +
d*x])/(16*a^2*d*Sqrt[a + a*Cos[c + d*x]]) - ((A + C)*Sec[c + d*x]*Tan[c + d*x])/(4*d*(a + a*Cos[c + d*x])^(5/2
)) - ((19*A + 3*C)*Sec[c + d*x]*Tan[c + d*x])/(16*a*d*(a + a*Cos[c + d*x])^(3/2)) + ((31*A + 7*C)*Sec[c + d*x]
*Tan[c + d*x])/(16*a^2*d*Sqrt[a + a*Cos[c + d*x]])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2773

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(-2*
b)/f, Subst[Int[1/(b*c + a*d - d*x^2), x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2978

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*
x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rule 2984

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x]
)^(n + 1))/(f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(b*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin
[e + f*x])^(n + 1)*Simp[A*(a*d*m + b*c*(n + 1)) - B*(a*c*m + b*d*(n + 1)) + b*(B*c - A*d)*(m + n + 2)*Sin[e +
f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || EqQ[m + 1/2, 0])

Rule 2985

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[(
B*c - A*d)/(b*c - a*d), Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f,
A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3042

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x
])^(n + 1))/(f*(b*c - a*d)*(2*m + 1)), x] + Dist[1/(b*(b*c - a*d)*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)
*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2
) + C*(b*c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] &&
NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)]

Rubi steps

\begin {align*} \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx &=-\frac {(A+C) \sec (c+d x) \tan (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}+\frac {\int \frac {\left (2 a (3 A+C)-\frac {1}{2} a (7 A-C) \cos (c+d x)\right ) \sec ^3(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx}{4 a^2}\\ &=-\frac {(A+C) \sec (c+d x) \tan (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac {(19 A+3 C) \sec (c+d x) \tan (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}+\frac {\int \frac {\left (a^2 (31 A+7 C)-\frac {5}{4} a^2 (19 A+3 C) \cos (c+d x)\right ) \sec ^3(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx}{8 a^4}\\ &=-\frac {(A+C) \sec (c+d x) \tan (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac {(19 A+3 C) \sec (c+d x) \tan (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}+\frac {(31 A+7 C) \sec (c+d x) \tan (c+d x)}{16 a^2 d \sqrt {a+a \cos (c+d x)}}+\frac {\int \frac {\left (-a^3 (63 A+11 C)+\frac {3}{2} a^3 (31 A+7 C) \cos (c+d x)\right ) \sec ^2(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx}{16 a^5}\\ &=-\frac {(63 A+11 C) \tan (c+d x)}{16 a^2 d \sqrt {a+a \cos (c+d x)}}-\frac {(A+C) \sec (c+d x) \tan (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac {(19 A+3 C) \sec (c+d x) \tan (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}+\frac {(31 A+7 C) \sec (c+d x) \tan (c+d x)}{16 a^2 d \sqrt {a+a \cos (c+d x)}}+\frac {\int \frac {\left (2 a^4 (39 A+8 C)-\frac {1}{2} a^4 (63 A+11 C) \cos (c+d x)\right ) \sec (c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx}{16 a^6}\\ &=-\frac {(63 A+11 C) \tan (c+d x)}{16 a^2 d \sqrt {a+a \cos (c+d x)}}-\frac {(A+C) \sec (c+d x) \tan (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac {(19 A+3 C) \sec (c+d x) \tan (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}+\frac {(31 A+7 C) \sec (c+d x) \tan (c+d x)}{16 a^2 d \sqrt {a+a \cos (c+d x)}}+\frac {(39 A+8 C) \int \sqrt {a+a \cos (c+d x)} \sec (c+d x) \, dx}{8 a^3}-\frac {(219 A+43 C) \int \frac {1}{\sqrt {a+a \cos (c+d x)}} \, dx}{32 a^2}\\ &=-\frac {(63 A+11 C) \tan (c+d x)}{16 a^2 d \sqrt {a+a \cos (c+d x)}}-\frac {(A+C) \sec (c+d x) \tan (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac {(19 A+3 C) \sec (c+d x) \tan (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}+\frac {(31 A+7 C) \sec (c+d x) \tan (c+d x)}{16 a^2 d \sqrt {a+a \cos (c+d x)}}-\frac {(39 A+8 C) \operatorname {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 a^2 d}+\frac {(219 A+43 C) \operatorname {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{16 a^2 d}\\ &=\frac {(39 A+8 C) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 a^{5/2} d}-\frac {(219 A+43 C) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {(63 A+11 C) \tan (c+d x)}{16 a^2 d \sqrt {a+a \cos (c+d x)}}-\frac {(A+C) \sec (c+d x) \tan (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac {(19 A+3 C) \sec (c+d x) \tan (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}+\frac {(31 A+7 C) \sec (c+d x) \tan (c+d x)}{16 a^2 d \sqrt {a+a \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 6.17, size = 408, normalized size = 1.56 \[ \frac {4 \cos ^5\left (\frac {c}{2}+\frac {d x}{2}\right ) \cos ^2(c+d x) \left (A \sec ^2(c+d x)+C\right ) \left (-\frac {A+C}{16 \left (1-\sin \left (\frac {c}{2}+\frac {d x}{2}\right )\right )^2}+\frac {A+C}{16 \left (\sin \left (\frac {c}{2}+\frac {d x}{2}\right )+1\right )^2}-\frac {27 A+11 C}{16 \left (1-\sin \left (\frac {c}{2}+\frac {d x}{2}\right )\right )}+\frac {27 A+11 C}{16 \left (\sin \left (\frac {c}{2}+\frac {d x}{2}\right )+1\right )}-\frac {1}{8} (219 A+43 C) \tanh ^{-1}\left (\sin \left (\frac {c}{2}+\frac {d x}{2}\right )\right )+4 \sqrt {2} (6 A+C) \tanh ^{-1}\left (\sqrt {2} \sin \left (\frac {c}{2}+\frac {d x}{2}\right )\right )-\frac {12 A \sin \left (\frac {c}{2}+\frac {d x}{2}\right )}{1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}+\frac {2 A \sin \left (\frac {c}{2}+\frac {d x}{2}\right )}{\left (1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )\right )^2}+\frac {3}{2} A \left (\frac {2 \sin \left (\frac {c}{2}+\frac {d x}{2}\right )}{1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}+\sqrt {2} \tanh ^{-1}\left (\sqrt {2} \sin \left (\frac {c}{2}+\frac {d x}{2}\right )\right )\right )-6 \sqrt {2} A \tanh ^{-1}\left (\sqrt {2} \sin \left (\frac {c}{2}+\frac {d x}{2}\right )\right )\right )}{d (a (\cos (c+d x)+1))^{5/2} (2 A+C \cos (2 c+2 d x)+C)} \]

Antiderivative was successfully verified.

[In]

Integrate[((A + C*Cos[c + d*x]^2)*Sec[c + d*x]^3)/(a + a*Cos[c + d*x])^(5/2),x]

[Out]

(4*Cos[c/2 + (d*x)/2]^5*Cos[c + d*x]^2*(C + A*Sec[c + d*x]^2)*(-1/8*((219*A + 43*C)*ArcTanh[Sin[c/2 + (d*x)/2]
]) - 6*Sqrt[2]*A*ArcTanh[Sqrt[2]*Sin[c/2 + (d*x)/2]] + 4*Sqrt[2]*(6*A + C)*ArcTanh[Sqrt[2]*Sin[c/2 + (d*x)/2]]
 - (A + C)/(16*(1 - Sin[c/2 + (d*x)/2])^2) - (27*A + 11*C)/(16*(1 - Sin[c/2 + (d*x)/2])) + (A + C)/(16*(1 + Si
n[c/2 + (d*x)/2])^2) + (27*A + 11*C)/(16*(1 + Sin[c/2 + (d*x)/2])) + (2*A*Sin[c/2 + (d*x)/2])/(1 - 2*Sin[c/2 +
 (d*x)/2]^2)^2 - (12*A*Sin[c/2 + (d*x)/2])/(1 - 2*Sin[c/2 + (d*x)/2]^2) + (3*A*(Sqrt[2]*ArcTanh[Sqrt[2]*Sin[c/
2 + (d*x)/2]] + (2*Sin[c/2 + (d*x)/2])/(1 - 2*Sin[c/2 + (d*x)/2]^2)))/2))/(d*(a*(1 + Cos[c + d*x]))^(5/2)*(2*A
 + C + C*Cos[2*c + 2*d*x]))

________________________________________________________________________________________

fricas [A]  time = 0.54, size = 421, normalized size = 1.61 \[ \frac {\sqrt {2} {\left ({\left (219 \, A + 43 \, C\right )} \cos \left (d x + c\right )^{5} + 3 \, {\left (219 \, A + 43 \, C\right )} \cos \left (d x + c\right )^{4} + 3 \, {\left (219 \, A + 43 \, C\right )} \cos \left (d x + c\right )^{3} + {\left (219 \, A + 43 \, C\right )} \cos \left (d x + c\right )^{2}\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 4 \, {\left ({\left (39 \, A + 8 \, C\right )} \cos \left (d x + c\right )^{5} + 3 \, {\left (39 \, A + 8 \, C\right )} \cos \left (d x + c\right )^{4} + 3 \, {\left (39 \, A + 8 \, C\right )} \cos \left (d x + c\right )^{3} + {\left (39 \, A + 8 \, C\right )} \cos \left (d x + c\right )^{2}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) - 4 \, {\left ({\left (63 \, A + 11 \, C\right )} \cos \left (d x + c\right )^{3} + 5 \, {\left (19 \, A + 3 \, C\right )} \cos \left (d x + c\right )^{2} + 20 \, A \cos \left (d x + c\right ) - 8 \, A\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{64 \, {\left (a^{3} d \cos \left (d x + c\right )^{5} + 3 \, a^{3} d \cos \left (d x + c\right )^{4} + 3 \, a^{3} d \cos \left (d x + c\right )^{3} + a^{3} d \cos \left (d x + c\right )^{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^3/(a+a*cos(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/64*(sqrt(2)*((219*A + 43*C)*cos(d*x + c)^5 + 3*(219*A + 43*C)*cos(d*x + c)^4 + 3*(219*A + 43*C)*cos(d*x + c)
^3 + (219*A + 43*C)*cos(d*x + c)^2)*sqrt(a)*log(-(a*cos(d*x + c)^2 + 2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(a
)*sin(d*x + c) - 2*a*cos(d*x + c) - 3*a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) + 4*((39*A + 8*C)*cos(d*x + c)
^5 + 3*(39*A + 8*C)*cos(d*x + c)^4 + 3*(39*A + 8*C)*cos(d*x + c)^3 + (39*A + 8*C)*cos(d*x + c)^2)*sqrt(a)*log(
(a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*sqrt(a*cos(d*x + c) + a)*sqrt(a)*(cos(d*x + c) - 2)*sin(d*x + c) +
8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) - 4*((63*A + 11*C)*cos(d*x + c)^3 + 5*(19*A + 3*C)*cos(d*x + c)^2 + 20
*A*cos(d*x + c) - 8*A)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c))/(a^3*d*cos(d*x + c)^5 + 3*a^3*d*cos(d*x + c)^4 +
 3*a^3*d*cos(d*x + c)^3 + a^3*d*cos(d*x + c)^2)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^3/(a+a*cos(d*x+c))^(5/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Warning, integration of abs or sign assumes constant sign by intervals
 (correct if the argument is real):Check [abs(cos((d*t_nostep+c)/2))]Discontinuities at zeroes of cos((d*t_nos
tep+c)/2) were not checkedEvaluation time: 1.86Unable to divide, perhaps due to rounding error%%%{%%{[%%%{%%{[
663535861056963827345930584064,0]:[1,0,-2]%%},[16]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[0]%%%} / %%%{%%%{%%{[990352
0314283042199192993792,0]:[1,0,-2]%%},[16]%%%},[0]%%%} Error: Bad Argument Value

________________________________________________________________________________________

maple [B]  time = 2.98, size = 1610, normalized size = 6.15 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*cos(d*x+c)^2)*sec(d*x+c)^3/(a+a*cos(d*x+c))^(5/2),x)

[Out]

-1/8*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(3*C*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)*cos(1/2*d*x+1/2*c)^2-6
24*A*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+a*2^(1/2)*cos(1/2*d*x
+1/2*c)+2*a))*cos(1/2*d*x+1/2*c)^8*a-624*A*ln(-4*(a*2^(1/2)*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2
)^(1/2)*a^(1/2)-2*a)/(2*cos(1/2*d*x+1/2*c)-2^(1/2)))*cos(1/2*d*x+1/2*c)^8*a-172*C*2^(1/2)*ln(2*(2*a^(1/2)*(a*s
in(1/2*d*x+1/2*c)^2)^(1/2)+2*a)/cos(1/2*d*x+1/2*c))*cos(1/2*d*x+1/2*c)^6*a+624*A*ln(-4*(a*2^(1/2)*cos(1/2*d*x+
1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a)/(2*cos(1/2*d*x+1/2*c)-2^(1/2)))*cos(1/2*d*x+1/2*c)^
6*a+624*A*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+a*2^(1/2)*cos(1/
2*d*x+1/2*c)+2*a))*cos(1/2*d*x+1/2*c)^6*a+128*C*ln(-4*(a*2^(1/2)*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2
*c)^2)^(1/2)*a^(1/2)-2*a)/(2*cos(1/2*d*x+1/2*c)-2^(1/2)))*cos(1/2*d*x+1/2*c)^6*a+128*C*ln(4/(2*cos(1/2*d*x+1/2
*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*cos(1/2*d*x+1/
2*c)^6*a-32*C*ln(-4*(a*2^(1/2)*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a)/(2*cos(1
/2*d*x+1/2*c)-2^(1/2)))*cos(1/2*d*x+1/2*c)^4*a-32*C*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*
x+1/2*c)^2)^(1/2)*a^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*cos(1/2*d*x+1/2*c)^4*a-876*A*ln(2*(2*a^(1/2)*(a*s
in(1/2*d*x+1/2*c)^2)^(1/2)+2*a)/cos(1/2*d*x+1/2*c))*2^(1/2)*cos(1/2*d*x+1/2*c)^6*a-188*A*2^(1/2)*(a*sin(1/2*d*
x+1/2*c)^2)^(1/2)*a^(1/2)*cos(1/2*d*x+1/2*c)^4-156*A*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d
*x+1/2*c)^2)^(1/2)*a^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*cos(1/2*d*x+1/2*c)^4*a-156*A*ln(-4*(a*2^(1/2)*co
s(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a)/(2*cos(1/2*d*x+1/2*c)-2^(1/2)))*cos(1/2*d
*x+1/2*c)^4*a+2*C*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+44*C*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a
^(1/2)*cos(1/2*d*x+1/2*c)^6-36*C*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)*cos(1/2*d*x+1/2*c)^4-128*C*ln(
-4*(a*2^(1/2)*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a)/(2*cos(1/2*d*x+1/2*c)-2^(
1/2)))*cos(1/2*d*x+1/2*c)^8*a-128*C*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2
)*a^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*cos(1/2*d*x+1/2*c)^8*a+19*A*a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)
^2)^(1/2)*cos(1/2*d*x+1/2*c)^2+2*A*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+43*C*2^(1/2)*ln(2*(2*a^(1/2)
*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+2*a)/cos(1/2*d*x+1/2*c))*cos(1/2*d*x+1/2*c)^4*a+219*A*ln(2*(2*a^(1/2)*(a*sin(1
/2*d*x+1/2*c)^2)^(1/2)+2*a)/cos(1/2*d*x+1/2*c))*2^(1/2)*cos(1/2*d*x+1/2*c)^4*a+252*A*2^(1/2)*(a*sin(1/2*d*x+1/
2*c)^2)^(1/2)*a^(1/2)*cos(1/2*d*x+1/2*c)^6+876*A*ln(2*(2*a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+2*a)/cos(1/2*d
*x+1/2*c))*2^(1/2)*cos(1/2*d*x+1/2*c)^8*a+172*C*ln(2*(2*a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+2*a)/cos(1/2*d*
x+1/2*c))*2^(1/2)*cos(1/2*d*x+1/2*c)^8*a)/a^(7/2)/cos(1/2*d*x+1/2*c)^3/(2*cos(1/2*d*x+1/2*c)+2^(1/2))^2/(2*cos
(1/2*d*x+1/2*c)-2^(1/2))^2/sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^3/(a+a*cos(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {C\,{\cos \left (c+d\,x\right )}^2+A}{{\cos \left (c+d\,x\right )}^3\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^3*(a + a*cos(c + d*x))^(5/2)),x)

[Out]

int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^3*(a + a*cos(c + d*x))^(5/2)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)**2)*sec(d*x+c)**3/(a+a*cos(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________